Electromagnetism | ||||||||||||
Electricity · Magnetism
|
||||||||||||
Coulomb's law is a law of physics describing the electrostatic interaction between electrically charged particles. It was studied and first published in 1783 by French physicist Charles Augustin de Coulomb and was essential to the development of the theory of electromagnetism. Nevertheless, the dependence of the electric force with distance (inverse square law) had been proposed previously by Joseph Priestley[1] and the dependence with both distance and charge had been discovered, but not published, by Henry Cavendish, prior to Coulomb's works.
Coulomb's law may be stated in scalar form as follows:
Contents |
The scalar form of Coulomb's law will only describe the magnitude of the electrostatic force between two electric charges. If direction is required, then the vector form is required as well. The magnitude of the electrostatic force (F) on a charge (q1) due to the presence of a second charge (q2), is given by
where r is the distance between the two charges and ke a proportionality constant. A positive force implies a repulsive interaction, while a negative force implies an attractive interaction.[2]
The proportionality constant ke, called the Coulomb constant (sometimes called the Coulomb force constant), is related to defined properties of space and can be calculated exactly:[3]
By definition in SI units, the speed of light in vacuum, denoted c,[4] is 299,792,458 m·s−1,[5] and the magnetic constant (μ0), is defined as 4π × 10−7 H·m−1,[6] leading to the consequential defined value for the electric constant (ε0) as ε0 = 1/(μ0c2) ≈ 8.854187817×10−12 F·m−1.[7] In cgs units, the unit charge, esu of charge or statcoulomb, is defined so that this Coulomb constant is 1 and dimensionless.
This formula says that the magnitude of the force is directly proportional to the magnitude of the charges of each object and inversely proportional to the square of the distance between them. The exponent in Coulomb's Law has been found to be equal to −2 with precision of at least 2.7±3.1×10−16.[8]
Coulomb's law can also be interpreted in terms of atomic units with the force expressed in Hartrees per Bohr radius, the charge in terms of the elementary charge, and the distances in terms of the Bohr radius.
It follows from the Lorentz Force Law that the magnitude of the electric field (E) created by a single point charge (q) at a certain distance (r) is given by:
For a positive charge, the direction of the electric field points along lines directed radially away from the location of the point charge, while the direction is the opposite for a negative charge. The SI units of electric field are volts per metre or newtons per coulomb.
In order to obtain both the magnitude and direction of the force on a charge, at position , experiencing a field due to the presence of another charge, q2 at position , the full vector form of Coulomb's law is required.
where is the separation of the two charges. This is simply the scalar definition of Coulomb's law with the direction given by the unit vector, , parallel with the line from charge to charge .[9]
If both charges have the same sign (like charges) then the product is positive and the direction of the force on is given by ; the charges repel each other. If the charges have opposite signs then the product is negative and the direction of the force on is given by ; the charges attract each other.
The principle of linear superposition may be used to calculate the force on a small test charge, , due to a system of discrete charges:
where and are the magnitude and position respectively of the charge, is a unit vector in the direction of (a vector pointing from charge to charge ), and is the magnitude of (the separation between charges and ).[9]
For a charge distribution an integral over the region containing the charge is equivalent to an infinite summation, treating each infinitesimal element of space as a point charge .
For a linear charge distribution (a good approximation for charge in a wire) where gives the charge per unit length at position , and is an infinitesimal element of length,
For a surface charge distribution (a good approximation for charge on a plate in a parallel plate capacitor) where gives the charge per unit area at position , and is an infinitesimal element of area,
For a volume charge distribution (such as charge within a bulk metal) where gives the charge per unit volume at position , and is an infinitesimal element of volume,
The force on a small test charge at position is given by
Below is a graphical representation of Coulomb's law, when . The vector is the force experienced by . The vector is the force experienced by . Their magnitudes will always be equal. The vector is the displacement vector between two charges ( and ).
In either formulation, Coulomb’s law is fully accurate only when the objects are stationary, and remains approximately correct only for slow movement. These conditions are collectively known as the electrostatic approximation. When movement takes place, magnetic fields are produced which alter the force on the two objects. The magnetic interaction between moving charges may be thought of as a manifestation of the force from the electrostatic field but with Einstein’s theory of relativity taken into consideration.
Particle property | Relationship | Field property | |||||
Vector quantity |
|
|
|||||
Relationship | |||||||
Scalar quantity |
|
|